On the Distribution of Pseudoprimes

نویسندگان

  • Carl Pomerance
  • CARL POMERANCE
چکیده

Let 9 (x) denote the pseudoprime counting function. With L(x) = exp{log x log log log x/log log *}> we prove 9(x) < x ■ L(x)~'/2 for large x, an improvement on the 1956 work of Erdös. We conjecture that 9(x) = xL(x)"1+o(1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudoprimes to 25 • 109

The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Carmichael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several...

متن کامل

On the Distributions of Pseudoprimes, Carmichael Numbers, and Strong Pseudoprimes

Building upon the work of Carl Pomerance and others, the central purpose of this discourse is to discuss the distribution of base-2 pseudoprimes, as well as improve upon Pomerance's conjecture regarding the Carmichael number counting function [8]. All conjectured formulas apply to any base b ≥ 2 for x ≥ x0(b). A table of base-2 pseudoprime, 2-strong pseudoprime, and Carmichael number counts up ...

متن کامل

The Distribution of Lucas and Elliptic Pseudoprimes

Let ¿?(x) denote the counting function for Lucas pseudoprimes, and 2?(x) denote the elliptic pseudoprime counting function. We prove that, for large x , 5?(x) < xL(x)~l/2 and W(x) < xL(x)~l/3 , where L(x) = exp(logxlogloglogx/log logx).

متن کامل

The Distribution of Pseudoprimes

The RSA crypto-system relies on the availability of very large prime numbers. Tests for finding these large primes can be categorized as deterministic and probabilistic. Deterministic tests, such as the Sieve of Erastothenes, offer a 100 percent assurance that the number tested and passed as prime is actually prime. Despite their refusal to err, deterministic tests are generally not used to fin...

متن کامل

Cipolla Pseudoprimes

We consider the pseudoprimes that M. Cipolla constructed. We call such pseudoprimes Cipolla pseudoprimes. In this paper we find infinitely many Lucas and Lehmer pseudoprimes that are analogous to Cipolla pseudoprimes.

متن کامل

Frobenius pseudoprimes

The proliferation of probable prime tests in recent years has produced a plethora of definitions with the word “pseudoprime” in them. Examples include pseudoprimes, Euler pseudoprimes, strong pseudoprimes, Lucas pseudoprimes, strong Lucas pseudoprimes, extra strong Lucas pseudoprimes and Perrin pseudoprimes. Though these tests represent a wealth of ideas, they exist as a hodge-podge of definiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010